Resolve
RDF Terms
Data based on @zazuko/vocabularies
Defined by
QUDT VOCAB Quantity Kinds Release 2.1.25
Click to Copy
quantitykind:MassieuFunction
Click to Copy
http://qudt.org/vocab/quantitykind/MassieuFunction
Namespace
Recommended prefix
Copy 'PREFIX quantitykind: <http://qudt.org/vocab/quantitykind/>'
lang:en
Massieu Function
lang:""
The Massieu function, \(\Psi\), is defined as: \(\Psi = \Psi (X_1, \dots , X_i, Y_{i+1}, \dots , Y_r )\), where for every system with degree of freedom \(r\) one may choose \(r\) variables, e.g. , to define a coordinate system, where \(X\) and \(Y\) are extensive and intensive variables, respectively, and where at least one extensive variable must be within this set in order to define the size of the system. The \((r + 1)^{th}\) variable,\(\Psi\) , is then called the Massieu function.
lang:""
http://en.wikipedia.org/wiki/Massieu_function
lang:""
http://www.iso.org/iso/catalogue_detail?csnumber=31890
lang:""
\(J = -A/T\), where \(A\) is Helmholtz energy and \(T\) is thermodynamic temperature.
lang:""
J