# Resolve RDF Terms

Defined by qudt:
qudt:QuantityKindDimensionVector
http://qudt.org/schema/qudt/QuantityKindDimensionVector

### Namespace

http://qudt.org/schema/qudt/

### Recommended prefix

qudt:

lang:""
Quantity Kind Dimension Vector
lang:""

A Quantity Kind Dimension Vector describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($$M$$), length ($$L$$), time ($$T$$) current ($$I$$), amount of substance ($$N$$), luminous intensity ($$J$$) and absolute temperature ($$\theta$$) as $$dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$$.

The rational powers of the dimensional exponents, $$\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$$, are positive, negative, or zero.

For example, the dimension of the physical quantity kind $$\it{speed}$$ is $$\boxed{length/time}$$, $$L/T$$ or $$LT^{-1}$$, and the dimension of the physical quantity kind force is $$\boxed{mass \times acceleration}$$ or $$\boxed{mass \times (length/time)/time}$$, $$ML/T^2$$ or $$MLT^{-2}$$ respectively.

blank node
blank node
blank node
blank node
blank node
blank node
blank node
blank node
blank node
blank node
lang:""
http://en.wikipedia.org/wiki/Dimensional_analysis
lang:""
http://web.mit.edu/2.25/www/pdf/DA_unified.pdf